4.8 Article

Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S

期刊

NANOSCALE
卷 5, 期 19, 页码 9383-9390

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr02975a

关键词

-

资金

  1. Department of Science & Technology (DST)
  2. Department of Electronics and Information Technology (DietY), Delhi

向作者/读者索取更多资源

Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of similar to 2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m(2) g(-1)). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO2 from abundant H2S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据