4.8 Article

Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures

期刊

NANOSCALE
卷 5, 期 19, 页码 9030-9039

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr02891g

关键词

-

资金

  1. U. S. DOE Advanced Research/Cross-cutting Technologies program at the National Energy Technology Laboratory
  2. agency of the United States Government

向作者/读者索取更多资源

Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 9001000 degrees C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据