4.8 Article

SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems

期刊

NANOSCALE
卷 5, 期 17, 页码 7831-7837

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr02300a

关键词

-

资金

  1. National Natural Science Foundation [21001046, 51002059]
  2. 973 Program of China [2011CB933300]
  3. Program for New Century Excellent Talents of the University in China [NCET-11-0179]

向作者/读者索取更多资源

Integrating an energy conversion or storage device with photodetectors into a self-powered system provides a promising route to future devices aimed at reduced size, low weight and high flexibility. We reported here the fabrication of a fully flexible self-powered photodetector nanosystem by integrating a flexible SnO2-cloth-based ultraviolet photodetector with a flexible SnO2-cloth-based lithium-ion battery. The flexible SnO2-cloth-based ultraviolet photodetectors showed fast response to ultraviolet light with excellent flexibility and stability. Using SnO2-on-carbon-cloth as the binder-free anode and commercial LiCoO2/Al foil as the cathode, a flexible full lithium-ion battery was assembled, exhibiting a reversible capacity of 550 mA h g(-1) even after 60 cycles at a current density of 200 mA g(-1) in a potential window of 2-3.8 V. When integrated with and driven by the flexible full battery, the fully flexible self-powered photodetector nanosystem exhibits comparable performance with an analogous externally powered device. Such an integrated nanosystem could serve as a wireless detecting system in large areas, as required in applications such as environmental sensing and biosensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据