4.8 Article

In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil-water separation

期刊

NANOSCALE
卷 5, 期 23, 页码 11657-11664

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr03937d

关键词

-

资金

  1. National Basic Research Program of China (973 Program) [2011CB606103, 2012CB525005]
  2. National Natural Science Foundation of China [51173022]
  3. Program for New Century Talents of the University in China

向作者/读者索取更多资源

Creating an efficient, cost-effective method that can provide simple, practical and high-throughput separation of oil-water mixtures has proved extremely challenging. This work responds to these challenges by designing, fabricating and evaluating a novel fluorinated polybenzoxazine (F-PBZ) modified nanofibrous membrane optimized to achieve gravity driven oil-water separation. The membrane design is then realized by a facile combination of electrospun poly(m-phenylene isophthalamide) (PMIA) nanofibers and an in situ polymerized F-PBZ functional layer incorporating SiO2 nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NP modification, the pristine hydrophilic PMIA nanofibrous membranes are endowed with promising superhydrophobicity with a water contact angle of 161 degrees and superoleophilicity with an oil contact angle of 0 degrees. This new membrane shows high thermal stability (350 degrees C) and good repellency to hot water (80 degrees C), and achieves an excellent mechanical strength of 40.8 MPa. Furthermore, the as-prepared membranes exhibited fast and efficient separation of oil-water mixtures by a solely gravity driven process, which makes them good candidates for industrial oil-polluted water treatments and oil spill cleanup, and also provided new insights into the design and development of functional nanofibrous membranes through F-PBZ modification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据