4.8 Article

Tuning electronic and magnetic properties of MoO3 sheets by cutting, hydrogenation, and external strain: a computational investigation

期刊

NANOSCALE
卷 5, 期 12, 页码 5321-5333

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr33009e

关键词

-

资金

  1. Department of Defense [W911NF-12-1-0083]
  2. National Science Foundation [EPS-1010094]
  3. Office Of The Director
  4. Office of Integrative Activities [1002410] Funding Source: National Science Foundation

向作者/读者索取更多资源

Density functional theory computations were performed to examine the electronic and magnetic properties of MoO3 two-dimensional (2D) nanosheets and their derived one-dimensional (1D) nanoribbons (NRs). The pristine 2D MoO3 sheet is a nonmagnetic semiconductor with an indirect band gap, but can be transformed to a magnetic metal when the surface O atoms are saturated by H. Depending on the cutting pattern, the pristine 1D NRs can be indirect band gap nonmagnetic semiconductors, magnetic semiconductors or magnetic metals. The fully hydrogenated NRs are metallic, while the edge-passivated NRs possess the nonmagnetic semiconducting feature, but with narrower band gap values compared to the pristine NRs. Both the 2D monolayer MoO3 sheet and the 1D nanoribbons maintain the semiconducting behaviors when exerting axial strain. These findings provide a simple and effective route to tune the magnetic and electronic properties of MoO3 nanostructures in a wide range and also facilitate the design of MoO3-based nanodevices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据