4.8 Article

Relating nanomaterial properties and microbial toxicity

期刊

NANOSCALE
卷 5, 期 2, 页码 463-474

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2nr32447d

关键词

-

资金

  1. Office of Biological and Environmental Research, U.S. Department of Energy (DOE)
  2. Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE
  3. U. S. DOE [DE-AC05-00OR22725]

向作者/读者索取更多资源

Metal andmetal oxide nanoparticles are among the most commonly used nanomaterials and their potential for adversely affecting environmental systems raises concern. Complex microbial consortia underlie environmental processes, and the potential toxicity of nanoparticles to microbial systems, and the consequent impacts on trophic balances, is particularly worrisome. The diverse array of metal and metal oxides, the different sizes and shapes that can be prepared and the variety of possible surface coatings complicate assessments of toxicity. Further muddling biocidal interpretations are the diversity of microbes and their intrinsic tolerances to stresses. Here, we review a range of studies focused on nanoparticle-microbial interactions in an effort to correlate the physical-chemical properties of engineered metal and metal oxide nanoparticles to their biological response. General conclusions regarding the parent material of the nanoparticle and the nanoparticle's size and shape on potential toxicity can be made. However, the surface coating of the material, which can be altered significantly by environmental conditions, can ameliorate or promote microbial toxicity. Understanding nanoparticle transformations and how the nanoparticle surface can be designed to control toxicity represents a key area for further study. Additionally, the vast array of microbial species and the structuring of these species within communities complicate extrapolations of nanoparticle toxicity in real world settings. Ultimately, to interpret the effect and eventual fate of engineered materials in the environment, an understanding of the relationship between nanoparticle properties and responses at the molecular, cellular and community levels will be essential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据