4.8 Article

Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability

期刊

NANOSCALE
卷 5, 期 5, 页码 2142-2151

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2nr33595f

关键词

-

资金

  1. National Natural Science Foundation of China [21263005, 21067004, 20904019]
  2. Jiangxi Province Education Department of Science and Technology Project [GJJ12344, GJJ11501]
  3. Jiangxi Province Youth Scientists Cultivating Object Program [20122BCB23015]

向作者/读者索取更多资源

Noble metal/semiconductor nanocomposites play an important role in high efficient photocatalysis. Herein, we demonstrate a facile strategy for fabrication of hollow Pt-ZnO nanocomposite microspheres with hierarchical structure under mild solvothermal conditions using Zn (CH3COO)(2)center dot 2H(2)O and HPtCl4 as the precursors, and polyethylene glycol-6000 (PEG-6000) and ethylene glycol as the reducing agent and solvent, respectively. The as-synthesized ZnO and Pt-ZnO composite nanocrystals were well characterized by powder X-ray diffraction (XRD), nitrogen-physical adsorption, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) emission spectroscopy. It was found that Pt content greatly influences the morphology of Pt-ZnO composite nanocrystals. Suitable concentration of HPtCl4 in the reaction solution system can produce well hierarchically hollow Pt-ZnO nanocomposite microspheres, which are composed of an assembly of fine Pt-ZnO nanocrystals. Photocatalytic tests of the Pt-ZnO microspheres for the degradation of the dye acid orange II revealed extremely high photocatalytic activity and stability compared with those of pure ZnO and corresponding Pt deposited ZnO. The remarkable photocatalytic performance of hollow Pt-ZnO microspheres mainly originated from their unique nanostructures and the low recombination rate of the e(-)/h(+) pairs by the platinum nanoparticles embedded in ZnO nanocrystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据