4.8 Article

SBA-15 confined synthesis of TiNb2O7 nanoparticles for lithium-ion batteries

期刊

NANOSCALE
卷 5, 期 22, 页码 11102-11107

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr03594h

关键词

-

资金

  1. NSF [1131290]
  2. Div Of Civil, Mechanical, & Manufact Inn
  3. Directorate For Engineering [1131290] Funding Source: National Science Foundation

向作者/读者索取更多资源

Unlike most conventional anode materials, the newly developed TiNb2O7 (TNO) does not form a solid electrolyte interface (SEI) layer, which makes it safe for high power requiring lithium-ion batteries. In this paper, we demonstrated an SBA-15 confined synthetic approach to prepare TNO nanoparticles (S-TNO) with a small particle size around 10 nm and a large BET surface area of 79.5 m(2) g(-1). It is worth mentioning that this is the smallest size reported so far for TNO. In contrast, the TNO (L-TNO) synthesized without SBA-15 has a particle size above 100 nm and a BET surface area of only 4.3 m(2) g(-1). The S-TNO shows better lithium-ion storage properties than L-TNO. The excellent electrochemical performance of S-TNO is attributed to its small crystalline size, which not only provides a larger effective area for better contact between the electrode material and the electrolyte, but also reduces the rate-limiting Li diffusion path. Moreover, S-TNO shows a high Coulombic efficiency (above 98% over 300 cycles) and negligible increase of impedance after cycling, which confirms no SEI layer formation in the operational voltage (1-3 V) of TNO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据