4.8 Article

Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots

期刊

NANOSCALE
卷 4, 期 16, 页码 5163-5168

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2nr31003a

关键词

-

资金

  1. NCI [RO1CA119397]
  2. Ford Fellowship [10995602-1-57847]
  3. John R. Oishei Foundation

向作者/读者索取更多资源

Quantum dots are known for their superior optical properties; however, when transferred into aqueous media, their luminescent properties are frequently compromised. When encapsulated in micelles for bioimaging applications, luminescent silicon quantum dots can lose as much as 50% of their luminescence depending on the formulation used. Here, we create an energy transfer micelle platform that combines silicon quantum dots with an anthracene-based dye in the hydrophobic core of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG) micelles. These phospholipid micelles are water dispersible, stable, and surrounded by a PEGylated layer with modifiable functional groups. The spectroscopic properties of energy transfer between the anthracene donors and silicon quantum dot acceptors were analyzed based on the observed dependence of the steady-state emission spectrum on concentration ratio, excitation wavelength, pH, and temperature. The luminescence of silicon quantum dots from the core of a 150 nm micelle is enhanced by more than 80% when the anthracene dye is added. This work provides a simple yet readily applicable solution to the long-standing problem of luminescence enhancement of silicon quantum dots and can serve as a template for improving the quantum dot emission yield for biological applications where luminescence signal enhancements are desirable and for solar applications where energy transfer plays a critical role in device performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据