4.8 Article

Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure

期刊

NANOSCALE
卷 4, 期 20, 页码 6604-6612

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2nr31831h

关键词

-

资金

  1. CSIR
  2. DRDO, New Delhi

向作者/读者索取更多资源

The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 degrees C followed by surface modification of the product by the reflux method at 110 degrees C for 1 h. The X-ray diffraction (XRD) pattern showed that the 'as prepared' sample consists of face centered cubic Ni and hexagonal wurtzite ZnO without any traces of impurity. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nickel nanoparticles under solvothermal conditions. These nickel nanoparticles, when subjected to reflux, formed the hexagonal zinc oxide coated nickel nanostructure. Fourier transform infrared (FTIR) spectra, photoluminescence (PL) and Raman studies also confirmed the presence of zinc oxide in the hybrid nanostructure. The growth mechanism for the development of the hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure has also been proposed. The appearance of the hysteresis loop, in the as-prepared Ni/ZnO hybrid nanostructure, demonstrated its ferromagnetic character at room temperature. The hexagonal Ni/ZnO nanostructure also acts as an efficient photocatalyst in the degradation of methylene blue under ultraviolet light irradiation. It is observed that the catalytic efficiency of the hybrid nanocatalyst is better compared to pure zinc oxide. Most importantly, the Ni/ZnO catalyst could also be easily separated, simply by applying an external magnetic field, and reused.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据