4.8 Review

Nanomechanical architecture of semiconductor nanomembranes

期刊

NANOSCALE
卷 3, 期 1, 页码 96-120

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0nr00648c

关键词

-

资金

  1. US DOE [DE-FG02-03ER46028, DE-FG02-03E46027, DE-FG02-04ER46148]
  2. US NSF/MRSEC [DMR-0520527]
  3. US AFOSR [FA9550-09-1-0230]
  4. AFOSR-MURI [FA9550-08-1-0337]

向作者/读者索取更多资源

Semiconductor nanomembranes are single-crystal sheets with thickness ranging from 5 to 500nm. They are flexible, bondable, and mechanically ultra-compliant. They present a new platform to combine bottom-up and top-down semiconductor processing to fabricate various three-dimensional (3D) nanomechanical architectures, with an unprecedented level of control. The bottom-up part is the self-assembly, via folding, rolling, bending, curling, or other forms of shape change of the nanomembranes, with top-down patterning providing the starting point for these processes. The self-assembly to form 3D structures is driven by elastic strain relaxation. A variety of structures, including tubes, rings, coils, rolled-up rugs'', and periodic wrinkles, has been made by such self-assembly. Their geometry and unique properties suggest many potential applications. In this review, we describe the design of desired nanostructures based on continuum mechanics modelling, definition and fabrication of 2D strained nanomembranes according to the established design, and release of the 2D strained sheet into a 3D or quasi-3D object. We also describe several materials properties of nanomechanical architectures. We discuss potential applications of nanomembrane technology to implement simple and hybrid functionalities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据