4.8 Article

Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid

期刊

NANOSCALE
卷 3, 期 5, 页码 2208-2214

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0nr01024c

关键词

-

资金

  1. Indian Institute of Technology Madras (IITM)
  2. Defence Research & Development Organisation (DRDO), India

向作者/读者索取更多资源

A hybrid nanostructure consisting of 1D carbon nanotubes and 2D graphene was successfully synthesized. Nanofluids were made by dispersing the hybrid nanostructure in deionized (DI) water and ethylene glycol (EG) separately, without any surfactant. Later the thermal conductivity and heat transfer coefficient of the nanofluids were experimentally measured. Meanwhile, multiwalled carbon nanotubes (MWNT) were prepared by catalytic chemical vapor deposition (CCVD), and hydrogen exfoliated graphene (HEG) was synthesized by exfoliating graphite oxide in a hydrogen atmosphere. The hybrid nanostructure (f-MWNT+f-HEG) of functionalized MWNT (f-MWNT) and functionalized HEG (f-HEG) was prepared by a post mixing technique, and the sample was characterized by powder X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. Thermal conductivity of the nanofluids was measured for different volume fractions of f-MWNT+f-HEG at different temperatures. The hybrid nanostructure dispersed in the DI water based nanofluid shows a thermal conductivity enhancement of 20% for a volume fraction of 0.05%. Similarly, for a Reynolds number of 15 500, the enhancement of the heat transfer coefficient is about 289% for a 0.01% volume fraction of f-MWNT+f-HEG.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据