4.8 Article

Metal sulfide nanoparticles synthesized via enzyme treatment of biopolymer stabilized nanosuspensions

期刊

NANOSCALE
卷 2, 期 2, 页码 240-247

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b9nr00194h

关键词

-

资金

  1. EPSRC (UK) ARF [EP C544803]
  2. Engineering and Physical Sciences Research Council [EP/C544803/1] Funding Source: researchfish

向作者/读者索取更多资源

Nanoparticles of CuS, CuxS, Ag2S and CdS were successfully prepared using a novel general and green synthetic process to give dextran biopolymer stabilised metal sulfifde nanosuspensions. Following preparation, dextranase enzyme was used to remove the bulk of the bound dextran to give pure stable metal sulfide nanocrystals for application in for example aspects of medicine, photonics and solar cells. Particles of good homogeneity were obtained and the CuS nanoparticle size was controlled to 9-27 nm by adjusting the reaction conditions. Cu2S nanoparticles were 14 nm, Ag2S nanoparticles were 20-50 nm and CdS nanoparticles were 9 nm is size. The complexing mechanism of nanoparticle sulfides to dextrans was further studied using carboxylmethyl dextran as a complexing agent and crosslinked Sephadex (dextran) 'beads as substrate. Particles were characterized by TEM, XRD, TGA, FT-IR and zeta-potential measurement, and their UV-vis spectroscopic absorption properties were determined. Stabilization of the sulfide nanoparticles with soluble hydroxylated biopolymers such as dextran is previously unreported and is here interpreted in terms of viscosity, pH of the system and weak polar S-H or S(metal) OH2+ interactions with dextran depending on the material. Notably, the complexing mechanism appears to differ significantly from that taking place in known dextran-metal oxide systems. The process shown here has good potential for scale-up as a biosynthetic route for a range of functional sulfide nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据