4.8 Article

Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb, Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells

期刊

NANOSCALE
卷 2, 期 7, 页码 1141-1148

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0nr00102c

关键词

-

资金

  1. National Science Foundation of China [20875011, 20675012]
  2. Education Committee of Liaoning Province of China Northeastern University
  3. US National Science Foundation
  4. National Institutes of Health
  5. Department of Defense Breast Cancer Research Program
  6. Oklahoma Center for the Advancement of Science and Technology
  7. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL092526] Funding Source: NIH RePORTER
  8. NATIONAL INSTITUTE OF ARTHRITIS AND MUSCULOSKELETAL AND SKIN DISEASES [R03AR056848] Funding Source: NIH RePORTER
  9. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [R21EB009909] Funding Source: NIH RePORTER

向作者/读者索取更多资源

A new kind of magnetic/luminescent multifunctional nanoparticles was synthesized by covalently linking multiple carboxyl-functionalized superparamagnetic Fe3O4 nanoparticles and individual amino-functionalized silica-coated fluorescent NaYF4 : Yb, Er up-conversion nanoparticles (UCNPs). The resultant nanocomposites bear active carboxylic and amino groups on the surface that were proved to be chemically active and useful for further facile bioconjugation with biomolecules. The UCNPs in the nanocomposite particles can emit visible light in response to the irradiation by near infrared (NIR) light, enabling the application of the nanocomposites in bioimaging. X-Ray diffraction, infrared spectroscopy, transmission electron microscopy, luminescence spectroscopy, and magnetometry were applied to characterize the multifunctional nanocomposites. The nanocomposites exhibited good superparamagnetic and excellent green up-conversion photoluminescent properties that can be exploited in magnetic separation and guiding as well as bioimaging. Due to the presence of active functional groups on the nanocomposite surface, the Fe3O4/NaYF4 : Yb, Er magnetic/luminescent nanocomposites were successfully conjugated with a protein called transferrin, which specifically recognizes the transferrin receptors overexpressed on HeLa cells, and can be employed for biolabeling and fluorescent imaging of HeLa cells. Because NIR light can penetrate biological samples with good depth without damaging them and can avoid autofluorescence from them, the presence of both NIR-responsive UCNPs and superparamagnetic nanoparticles in the nanocomposite particles will enable the practical application of the nanocomposites in bioimaging and separation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据