4.6 Article

Targeted cargo delivery using a rotating nickel nanowire

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nano.2012.03.002

关键词

Nickel nanowire; Microbead; Microorganism; Cell manipulation; Rotating magnetic field

资金

  1. European Commission
  2. European Research Council Advanced Grant

向作者/读者索取更多资源

This paper reports an approach to perform basic noncontact and contact manipulation tasks using rotating nickel nanowires driven by a rotating magnetic field. A rotating nanowire is capable of propulsion and steering near a solid surface by a tumbling motion. The FEM simulation shows that fluid flow is induced around the rotating nanowire, which was applied to manipulate micro-objects in a noncontact fashion. Pushing, pulling, and rotation tests of individual polystyrene microbeads are conducted on a solid surface. In addition, targeted delivery tasks of biological samples, e.g., individual flagellated microorganisms and human blood cells, are demonstrated. The results imply that rotating magnetic nanowires are good tools for handling cellular and subcellular objects in an aqueous low-Reynolds-number environment and have potential for single-cell analysis. From the Clinical Editor: In this study, the authors report the ability to push, pull, and rotate individual polystyrene microbeads on a solid surface. Furthermore, they demonstrate targeted delivery of biological samples, implying that rotating magnetic nanowires are good tools for handling cellular and subcellular objects. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据