4.6 Article

Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nano.2010.10.001

关键词

ZnO nanoparticles; Anticancer; Lipid peroxidation; Reactive oxygen species; Apoptosis

资金

  1. National Research Foundation of Korea [과06B2406] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Nanoparticles are increasingly recognized for their utility in biological applications including nanomedicine. The present study investigated the toxicity of zinc oxide (ZnO) nanoparticles toward prokaryotic and eukaryotic cells. Cytotoxicity of ZnO to mammalian cells was studied using human myeloblastic leukemia cells (HL60) and normal peripheral blood mononuclear cells (PBMCs). Antibacterial activity of ZnO was also tested against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, as well as the Gram-positive bacterium Staphylococcus aureus, and the effect was more pronounced with the Gram-positive than the Gram-negative bacteria. ZnO nanoparticles exhibited a preferential ability to kill cancerous HL60 cells as compared with normal PBMCs. The nanoparticles enhanced ultrasound-induced lipid peroxidation in the liposomal membrane. The work suggested two mechanisms underlying the toxicity of ZnO: (i) involvement of the generation of reactive oxygen species (ROS) and (ii) induction of apoptosis. The work also revealed potential utility of ZnO nanoparticles in the treatment of cancer, for their selective toxicity to cancer cells. From the Clinical Editor: The toxicity of zinc oxide to bacteria was related to the generation of reactive oxygen species and to the induction of apoptosis. Interestingly, these effects were differentially greater in human myeloblastic leukemia cells (HL60) than normal peripheral blood mononuclear cells. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据