4.7 Article

Carbon nanotube-mediated wireless cell permeabilization: drug and gene uptake

期刊

NANOMEDICINE
卷 6, 期 10, 页码 1709-1718

出版社

FUTURE MEDICINE LTD
DOI: 10.2217/NNM.11.62

关键词

brain transfection; carbon nanotubes; cell permeabilization; electromagnetic field

资金

  1. EC [033378]
  2. MIUR

向作者/读者索取更多资源

Aim: This work aims to exploit the 'antenna' properties of multiwalled carbon nanotubes (MWCNTs). They can be used to induce cell permeabilization in order to transfer drugs (normally impermeable to cell membranes) both in in vitro and in vivo models. Material & Methods: The performance of the MWCNTs as receiver antenna was modeled by finite element modeling. Once the appropriate field has been identified, the antenna properties of MWCNTs were investigated in sequential experiments involving immortalized fibroblast cell line (drug model: doxorubicin chemothererapeutic agent) and living mice (drug model: bcl-2 antiapoptotic gene) following stereotactic injection in the cerebral motor cortex. Results: Finite element modeling analysis predicts that our MWCNTs irradiated in the radiofrequency field resemble thin-wire dipole antennas. In vitro experiments confirmed that combination of MWCNTs and electromagnetic field treatment dramatically favors intracellular drug uptake and, most importantly, drug nuclear localization. Finally, the brain of each irradiated animal exhibits a significantly higher number of transfected cells compared with the appropriate controls. Conclusion: This wireless application has the potential for MWCNT-based intracellular drug delivery and electro-stimulation therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据