4.7 Article

Fe3O4/TiO2 core/shell magnetic nanoparticle-based photokilling of pathogenic bacteria

期刊

NANOMEDICINE
卷 5, 期 10, 页码 1585-1593

出版社

FUTURE MEDICINE LTD
DOI: 10.2217/NNM.10.92

关键词

antibiotic-resistant; magnetic nanoparticles; pathogenic bacteria; photokilling; titania

资金

  1. National Science Council of Taiwan

向作者/读者索取更多资源

Aims: We demonstrate a photokilling approach for pathogenic bacteria using magnetic nanoparticles as photokilling nanoprobes. Materials & methods: The nanoprobes are composed of iron oxide/titania (Fe3O4/TiO2) core/shell magnetic nanoparticles. The titanium layer on the magnetic nanoprobes plays two roles: as a photokilling agent and as an affinity substrate for pathogenic bacteria. The magnetic property of the nanoprobes allows the resultant nanoprobe-target species conjugates to be readily aggregated at a small spot under external magnetic field for conducting photokilling treatment. Therefore, damage to nontarget cells can be reduced. Results: The results show that Fe3O4/TiO2 core/shell magnetic nanoparticles do not only have the capacity to target pathogenic bacteria, including Gram-negative, Gram-positive and antibiotic-resistant bacteria, but they can also be used to effectively inhibit the cell growth of the bacteria (>99.9%) targeted by the magnetic nanoparticles under irradiation of a low-power UV lamp (lambda(max) similar to 306 nm, 0.412 mW/cm(2)) within 15 min. Conclusion: The potential application of this approach is in the treatment of cutaneous bacterial infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据