4.8 Review

Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges

期刊

NANO TODAY
卷 8, 期 6, 页码 643-676

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.nantod.2013.11.003

关键词

Lanthanide; Upconverting; Nanomaterials; Efficiency; Core/shell

资金

  1. NSFC [21322508, 21101029, 21273041, 21210004]
  2. China National Key Basic Research Program (973 Project) [2013CB934100, 2012CB224805, 2010CB933901]
  3. Shanghai Rising-Star Program [12QA1400400]
  4. State Key Laboratory of Pollution Control and Resource Reuse Foundation [PCRRF12001]
  5. Fudan Startup Foundation for Advanced Talents

向作者/读者索取更多资源

Over the past decade, high-quality lanthanide doped upconverting nanoparticles (UCNPs) have been successfully synthesized with the rapid development of nanotechnology and are becoming more prominent in wide application fields, especially in biological sciences. Compared with the traditionally used biological labels such as organic dyes and quantum dots (QDs), upconversion nanomaterials have many advantages, including higher chemical stability, lower toxicity, and higher signal-to-noise ratio. However, the low upconversion efficiency of the lanthanide UCNPs is still the most serious limitation for their applications. Improvements are still needed to optimize upconversion optical properties for further applications. In this review, we summarize the recent progresses for the enhancement of upconversion efficiency of UCNPs and discuss the challenges and opportunities to realize the highly efficient upconversion nanomaterials by systematic comparison of the advantages and shortcomings between UCNPs and QDs organic dyes from various aspects, such as the luminescence mechanism, multicolor emission, luminescent stability, efficiency, ultra-small nanocrystals fabrication and so on. Furthermore, this review describes the recent progresses of UCNPs based applications in multiplexed encoding, guest delivery and release system, photodynamic therapy (PDT), solar cell, photocatalysis and so on. We also detail the major barriers that currently prevent UCNPs from mainstream applications. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据