4.8 Article

Hydrogenation of the buffer-layer graphene on 6H-SiC (0001): A possible route for the engineering of graphene-based devices

期刊

NANO RESEARCH
卷 8, 期 3, 页码 839-850

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-014-0566-0

关键词

graphene; hydrogenation; photoemission spectroscopy; electronic structure

资金

  1. [ANR-10-BLAN 1017 ChimiGraphN]

向作者/读者索取更多资源

The hydrogenation at various temperatures of the (6 root 3 x 6 root 3)R30 degrees reconstruction of SiC(0001), the so-called buffer layer graphene (BLG), is investigated. For the BLG, a significant concentration of remaining dangling bonds related to unsaturated Si atoms of the outermost SiC bilayer is evidenced in the inverse photoemission spectra. These dangling bonds give rise to a peak around 1 eV above the Fermi level, associated with the upper single-electron states of a Mott-Hubbard insulator, which vanishes upon hydrogenation. Hydrogen atoms adsorbed at ambient temperature remain covalently bound to BLG (H-BLG) up to temperatures of similar to 500 degrees C. They induce additional C-Si bonds at the BLG/SiC interface that saturate the remaining Si dangling bonds, as evidenced in both IPES and Auger electron spectra. The H-BLG further shows a large energy gap and an excess n-type doping in comparison to the pristine BLG. Upon hydrogen exposure at higher temperature (> 700 degrees C), hydrogen atoms intercalate at the BLG/SiC interface, inducing the formation of a single layer of quasi-freestanding graphene (QFSG) lying on top of a hydrogenated (root 3 x root 3)R30 degrees reconstruction as supported by IPES. We suggest that the high-stability and the distinct electronic structure of both BLG-derived structures, H-BLG and QFSG, may open a route for the engineering of graphene-based devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据