4.8 Article

Materials Processing Routes to Trap-Free Halide Perovskites

期刊

NANO LETTERS
卷 14, 期 11, 页码 6281-6286

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl502612m

关键词

Perovskite; defect; electronic traps; diffusion length; growth; precurson

资金

  1. King Abdullah University of Science and Technology (KAUST) [KUS-11-009-21]
  2. Ontario Research Fund Research Excellence Program
  3. Natural Sciences and Engineering Research Council (NSERC) of Canada
  4. Ontario Government
  5. Canada Foundation for Innovation under the Compute Canada
  6. Government of Ontario
  7. Ontario Research Fund-Research Excellence
  8. University of Toronto

向作者/读者索取更多资源

Photovoltaic devices based on lead iodide perovskite films have seen rapid advancements, recently achieving an impressive 17.9% certified solar power conversion efficiency. Reports have consistently emphasized that the specific choice of growth conditions and chemical precursors is central to achieving superior performance from these materials; yet the roles and mechanisms underlying the selection of materials processing route is poorly understood. Here we show that films grown under iodine-rich conditions are prone to a high density of deep electronic traps (recombination centers), while the use of a chloride precursor avoids the formation of key defects (Pb atom substituted by I) responsible for short diffusion lengths and poor photovoltaic performance. Furthermore, the lowest-energy surfaces of perovskite crystals are found to be entirely trap-free, preserving both electron and hole delocalization to a remarkable degree, helping to account for explaining the success of polycrystalline perovskite films. We construct perovskite films from I-poor conditions using a lead acetate precursor, and our measurement of a long (600 +/- 40 nm) diffusion length confirms this new picture of the importance of growth conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据