4.8 Article

Electrical Detection of Spin-Polarized Surface States Conduction in (Bi0.5Sb0.47)2Te3 Topological Insulator

期刊

NANO LETTERS
卷 14, 期 9, 页码 5423-5429

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl5026198

关键词

Topological insulator; spin polarization; surface states; spin-momentum locking; spin detection

资金

  1. Defense Advanced Research Projects Agency (DARPA) [N66001-12-1-4034, N66001-11-1-4105]
  2. Function Accelerated nanoMaterial Engineering (FAME) center
  3. NSF [DMR-1157490]
  4. State of Florida
  5. Department of Energy (DOE)
  6. Raytheon endowed chair professorship
  7. Natural Science Foundation of China [11174244]
  8. Zhejiang Provincial Natural Science Foundation of China [LR12A04002]
  9. National Young 1000 Talents Plan

向作者/读者索取更多资源

Strong spin-orbit interaction and time-reversal symmetry in topological insulators enable the spin-momentum locking for the helical surface states. To date, however, there has been little report of direct electrical spin injection/detection in topological insulator. In this letter, we report the electrical detection of spin-polarized surface states conduction using a Co/Al2O3 ferromagnetic tunneling contact, in which the compound topological insulator (Bi0.53Sb0.47)(2)Te-3 was used to achieve low bulk carrier density. Resistance (voltage) hysteresis with the amplitude up to about 10 Omega was observed when sweeping the magnetic field to change the relative orientation between the Co electrode magnetization and the spin polarization of surface states. The two resistance states were reversible by changing the electric current direction, affirming the spin-momentum locking in the topological surface states. Angle-dependent measurement was also performed to further confirm that the abrupt change in the voltage (resistance) was associated with the magnetization switching of the Co electrode. The spin voltage amplitude was quantitatively analyzed to yield an effective spin polarization of 1.02% for the surface states conduction in (Bi0.53Sb0.47)(2)Te-3. Our results show a direct evidence of spin polarization in the topological surface states conduction. It might open up great opportunities to explore energy-efficient spintronic devices based on topological insulators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据