4.8 Article

Bandgap, Mid-Gap States, and Gating Effects in MoS2

期刊

NANO LETTERS
卷 14, 期 8, 页码 4628-4633

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl501659n

关键词

MoS2; scanning tunneling microscopy/spectroscopy; two-dimensional electronics; defects; atomic resolution imaging

资金

  1. NSF [DMR 1207108]
  2. [DOE-FG02-99ER45742]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [1207108] Funding Source: National Science Foundation

向作者/读者索取更多资源

The discovery of graphene has put the spotlight on other layered materials including transition metal dichalcogenites (TMD) as building blocks for novel heterostructures assembled from stacked atomic layers. Molybdenum disulfide, MoS2, a semiconductor in the TMD family, with its remarkable thermal and chemical stability and high mobility, has emerged as a promising candidate for postsilicon applications such as switching, photonics, and flexible electronics. Because these rely on controlling the position of the Fermi energy (E-F), it is crucial to understand its dependence on doping and gating. To elucidate these questions we carried out gated scanning tunneling microscopy (STM) and spectroscopy (STS) measurements and compared them with transport measurements in a field effect transistor (FET) device configuration. This made it possible to measure the bandgap and the position of E-F in MoS2 and to track its evolution with gate voltage. For bulk samples, the measured bandgap (similar to 1.3 eV) is comparable to the value obtained by photoluminescence, and the position of E-F (similar to 0.35 eV) below the conduction band, is consistent with N-doping reported in this material. We show that the N-doping in bulk samples can be attributed to S vacancies. In contrast, the significantly higher N-doping observed in thin MoS2 films deposited on SiO2 is dominated by charge traps at the sample-substrate interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据