4.8 Article

Trap-Free Transport in Ordered and Disordered TiO2 Nanostructures

期刊

NANO LETTERS
卷 14, 期 5, 页码 2305-2309

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl4046087

关键词

Trap-free transport; TiO2 nanotubes; grain boundaries; electron scattering; dye-sensitized solar cells

资金

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC36-08GO28308]

向作者/读者索取更多资源

Understanding the influence of different film structures on electron diffusion in nanoporous metal oxide films has been challenging. Because of the rate-limiting role that traps play in controlling the transport properties, the structural effects of different film architectures are largely obscured or reduced. We describe a general approach to probe the impact of structural order and disorder on the charge-carrier dynamics without the interference of transport-limiting traps. As an illustration of this approach, we explore the consequences of trap-free diffusion in vertically aligned nanotube structures and random nanoparticle networks in sensitized titanium dioxide solar cells. Values of the electron diffusion coefficients in the nanotubes approached those observed for the single crystal and were up to 2 orders of magnitude greater than those measured for nanoparticle films with various average crystallites sizes. Transport measurements together with modeling show that electron scattering at grain boundaries in particle networks limits trap-free diffusion. In presence of traps, transport was 10(3)-10(5) times slower in nanoparticle films than in the single crystal. Understanding the link between structure and carrier dynamics is important for systematically altering and eventually controlling the electronic properties of nanoscaled materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据