4.8 Article

Hydration of Bilayered Graphene Oxide

期刊

NANO LETTERS
卷 14, 期 7, 页码 3993-3998

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl5013689

关键词

Graphene oxide; graphene; hydration; scanning force microscopy

资金

  1. Graduate School of Analytical Sciences Adlershof
  2. SALSA
  3. Swedish Research Council [621-2012-3654]
  4. Angpanneforeningens Forskningsstifelse

向作者/读者索取更多资源

The hydration of graphene oxide (GO) membranes is the key to understand their remarkable selectivity in permeation of water molecules and humidity-dependent gas separation. We investigated the hydration of single GO layers as a function of humidity using scanning force microscopy, and we determined the single interlayer distance from the step height of a single GO layer on top of one or two GO layers. This interlayer distance grows gradually by approximately 1 A upon a relative humidity (RH) increase in the range of 2 to similar to 80% and the immersion into liquid water increases the interlayer distance further by another 3 A. The gradual expansion of the single interlayer distance is in good agreement with the averaged distance measured by X-ray diffraction on multilayered graphite oxides, which is commonly explained with an interstratification model. However, our experimental design excludes effects connected to interstratification. Instead we determine directly if insertion of water into GO occurs strictly by monolayers or the thickness of GO layers changes gradually. We find that hydration with up to 80% RH is a continuous process of incorporation of water molecules into single GO layers, while liquid water inserts as monolayers. The similarity of hydration for our bilayer and previously reported multilayered materials implies GO few and even bilayers to be suitable for selective water transport.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据