4.8 Article

From Ab Initio Calculations to Multiscale Design of Si/C Core-Shell Particles for Li-Ion Anodes

期刊

NANO LETTERS
卷 14, 期 4, 页码 2140-2149

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl500410g

关键词

Li-ion battery; Si/C composite anode; ab initio calculations; continuum modeling; Si/C interface strength; fracture

资金

  1. GM-Brown Collaborative Research Laboratory on Computational Materials Science
  2. Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231, 7056410]
  3. Directorate For Engineering
  4. Div Of Civil, Mechanical, & Manufact Inn [1000822] Funding Source: National Science Foundation

向作者/读者索取更多资源

The design of novel Si-enhanced nanocomposite electrodes that will successfully mitigate mechanical and chemical degradation is becoming increasingly important for next generation Li-ion batteries. Recently Si/C hollow core shell nanoparticles were proposed as a promising anode architecture, which can successfully sustain thousands of cycles with high Coulombic efficiency. As the structural integrity and functionality of these heterogeneous Si materials depend on the strength and fracture energy of the active materials, an in-depth understanding of the interface and their intrinsic mechanical properties, such as fracture strength and debonding, becomes critical for the successful design of such and similar composites. Here, we first perform ab initio simulations to calculate these properties for lithiated a-Si/a-C interface structures and combine these results with linear elasticity expressions to model conditions that will avert fracture and debonding in these heterostructures. We find that the a-Si/a-C interface retains good adhesion even at high stages of lithiation. For average lithiated structures, we predict that the strong Si C bonding averts fracture at the interface; instead, the structure ruptures within lithiated a-Si. From the calculated values and linear elastic fracture mechanics, we then construct a continuum level diagram, which outlines the safe regimes of operation in terms of the core and shell thickness and the state of charge. We believe that this multiscale approach can serve as a foundation for developing quantitative failure models and for subsequent development of flaw-tolerant anode architectures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据