4.8 Article

Electronic Structure of a Quasi-Freestanding MoS2 Monolayer

期刊

NANO LETTERS
卷 14, 期 3, 页码 1312-1316

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl4042824

关键词

Molybdenum disulfide (MoS2); transition metal dichalcogenides (TMD); layered semiconductor; electronic structure; angle-resolved photoemission; van der Waals expansion

资金

  1. Thailand Research Fund, Suranaree University of Technology (TRF) [RSA5680052]
  2. Office of Higher Education Commissions under NRU project
  3. U.K. EPSRC [EP/I031014/1]
  4. ERC [207901]
  5. DPST
  6. Royal Society through a University Research Fellowship
  7. Office of Naval Research [N00014-12-1-0791]
  8. NANOTEC, NSTDA, Thailand through its program of Center of Excellence Network
  9. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
  10. Engineering and Physical Sciences Research Council [EP/I031014/1] Funding Source: researchfish
  11. European Research Council (ERC) [207901] Funding Source: European Research Council (ERC)
  12. EPSRC [EP/I031014/1] Funding Source: UKRI

向作者/读者索取更多资源

Several transition-metal dichalcogenides exhibit a striking crossover from indirect to direct band gap semiconductors as they are thinned down to a single monolayer. Here, we demonstrate how an electronic structure characteristic of the isolated monolayer can be created at the surface of a bulk MoS2 crystal. This is achieved by intercalating potassium in the interlayer van der Waals gap, expanding its size while simultaneously doping electrons into the conduction band. Our angle-resolved photoemission measurements reveal resulting electron pockets centered at the (K) over bar and (K') over bar points of the Brillouin zone, providing the first momentum-resolved measurements of how the conduction band dispersions evolve to yield an approximately direct band gap of similar to 1.8 eV in quasi-freestanding monolayer MoS2. As well as validating previous theoretical proposals, this establishes a novel methodology for manipulating electronic structure in transition-metal dichalcogenides, opening a new route for the generation of large-area quasi-freestanding monolayers for future fundamental study and use in practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据