4.8 Article

Sliding-Triboelectric Nanogenerators Based on In-Plane Charge-Separation Mechanism

期刊

NANO LETTERS
卷 13, 期 5, 页码 2226-2233

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl400738p

关键词

Mechanical energy harvesting; triboelectric nanogenerators; in-plane charge separation; self-powered systems

资金

  1. Airforce, U.S. Department of Energy, Office of Basic Energy Sciences [DEFG02-07ER46394]
  2. NSF
  3. Knowledge Innovation Program of the Chinese Academy of Sciences [KJCX2-YW-M13]

向作者/读者索取更多资源

Aiming at harvesting ambient mechanical energy for self-powered systems, triboelectric nanogenerators (TENGs) have been recently developed as a highly efficient, cost-effective and robust approach to generate electricity from mechanical movements and vibrations on the basis of the coupling between triboelectrification and electrostatic induction. However, all of the previously demonstrated TENGs are based on vertical separation of triboelectric-charged planes, which requires sophisticated device structures to ensure enough resilience for the charge separation, otherwise there is no output current. In this paper, we demonstrated a newly designed TENG based on an in-plane charge separation process using the relative sliding between two contacting surfaces. Using Polyamide 6,6 (Nylon) and polytetrafluoroethylene (PTFE) films with surface etched nanowires, the two polymers at the opposite ends of the triboelectric series, the newly invented TENG produces an open-circuit voltage up to similar to 1300 V and a short-circuit current density of 4.1 mA/m(2) with a peak power density of 5.3 W/m(2), which can be used as a direct power source for instantaneously driving hundreds of serially connected light-emitting diodes (LEDs). The working principle and the relationships between electrical outputs and the sliding motion are fully elaborated and systematically studied, providing a new mode of TENGs with diverse applications. Compared to the existing vertical-touching based TENGs, this planar-sliding TENG has a high efficiency, easy fabrication, and suitability for many types of mechanical triggering. Furthermore, with the relationship between the electrical output and the sliding motion being calibrated, the sliding-based TENG could potentially be used as a self-powered displacement/speed/acceleration sensor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据