4.8 Article

Enhanced Nanoscale Friction on Fluorinated Graphene

期刊

NANO LETTERS
卷 12, 期 12, 页码 6043-6048

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl204019k

关键词

Fluorinated graphene; pristine graphene; atomic force microscopy; friction; adhesion

资金

  1. WCU (World Class University) through the National Research Foundation (NRF) of Korea [R-31-2008-000-10055-0, R31-2008-000-10071-0, KRF-2012-009249, KRF-2010-0005390]
  2. SRC Centre for Topological Matter through the National Research Foundation (NRF) of Korea [2011-0030787]
  3. Ministry of Education, Science and Technology (MEST) of Korea
  4. Excellence Program in the School of Electrical Engineering at the University of Ulsan
  5. National Research Foundation of Korea [R31-2012-000-10071-0, 2011-0030787] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据