4.8 Article

High-Capacity Lithium-Ion Battery Conversion Cathodes Based on Iron Fluoride Nanowires and Insights into the Conversion Mechanism

期刊

NANO LETTERS
卷 12, 期 11, 页码 6030-6037

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl303630p

关键词

FeF3; nanowire; conversion cathode; high capacity; lithium-ion batteries

资金

  1. NSF [DMR-1106184]
  2. Research Corporation SciaLog Award
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [1106184] Funding Source: National Science Foundation

向作者/读者索取更多资源

The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF3) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF3 nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF3 NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF3 NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF3) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF3 NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据