4.8 Article

Plasmon Enhanced Solar-to-Fuel Energy Conversion

期刊

NANO LETTERS
卷 11, 期 8, 页码 3440-3446

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl201908s

关键词

Plasmon; noble metal nanoparticles; iron oxide; water splitting; water oxidation; solar fuel

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001060]
  2. Samsung
  3. Deutsche Forschungsgemeinschaft (DFG)
  4. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Future generations of photoelectrodes for solar fuel generation must employ inexpensive, earth-abundant absorber materials in order to provide a large-scale source of clean energy. These materials tend to have poor electrical transport properties and exhibit carrier diffusion lengths which are significantly shorter than the absorption depth of light. As a result, many photoexcited carriers are generated too far from a reactive surface and recombine instead of participating in solar-to-fuel conversion. We demonstrate that plasmonic resonances in metallic nanostructures and multilayer interference effects can be engineered to strongly concentrate sunlight close to the electrode/liquid interface, precisely where the relevant reactions take place. On comparison of spectral features in the enhanced photocurrent spectra to full-field electromagnetic simulations, the contribution of surface plasmon excitations is verified. These results open the door to the optimization of a wide variety of photochemical processes by leveraging the rapid advances in the field of plasmonics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据