4.8 Article

Bulk Heterojunction Photovoltaic Active Layers via Bilayer Interdiffusion

期刊

NANO LETTERS
卷 11, 期 5, 页码 2071-2078

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl200552r

关键词

Photovoltaic devices; morphology; bilayer; diffusion; bulk heterojunction; spinodal decomposition

资金

  1. Department of Energy [DOE DE-PS02-08ER15944]
  2. NSF [DMR-0820506]
  3. University of Santa Barbara through the Materials Research Facilities Network [DMR05-30415]
  4. Konarka
  5. Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy
  6. DOE, Office of Science, and Office of Basic Energy Sciences
  7. Division Of Materials Research
  8. Direct For Mathematical & Physical Scien [820506] Funding Source: National Science Foundation

向作者/读者索取更多资源

To better understand the physics of the photoactive layer in the organic photovoltaic devices, it is necessary to gain a quantitative understanding of the morphology and the manner in which it develops. A key element in the kinetics associated with the structure development is the interdiffusion of the components. To that end we used P3HT/PCBM bilayers as a model to investigate the interdiffusion of the components and its role in the development of the morphology. A detailed description of the diffusion behavior and the morphology developed from a layer of P3HT in contact with a layer of PCBM during thermal annealing is given. Amorphous P3HT and PCBM are shown to be highly miscible and PCBM can penetrate into the P3HT layer through the P3HT amorphous region and form the bulk heterojunction structure within a few seconds of annealing at 150 C. The results indicated that one phase is an ordered P3HT domain and the other phase is the mixture of amorphous P3HT and PCBM which is not consistent with a phase separation of the components by a spinodal decomposition mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据