4.8 Article

Unexpected Hole Transfer Leads to High Efficiency Single-Walled Carbon Nanotube Hybrid Photovoltaic

期刊

NANO LETTERS
卷 11, 期 1, 页码 286-290

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl103879b

关键词

Carbon nanotube; P3HT; hybrid photovoltaics; hole acceptor

资金

  1. UoM/SJTU
  2. National Science Foundation

向作者/读者索取更多资源

We report surprisingly efficient photocurrent generation at individual single-walled carbon nanotube (SWNT) /poly(3-hexylthiophene-2,5-diyl) (P3HT) junctions. Contrary to previous prediction, both semiconducting SWNTs (s-SWNTs) and metallic SWNTs (m-SWNTs) function as efficient hole acceptors. By active tuning of SWNTs' Fermi level, we confirm that P3HT p-dopes both s-SWNT and m-SWNT, and the work function difference between the nanotube and P3HT leads to a built-in voltage driving the efficient exciton dissociation and hole transfer. We further demonstrate square millimeter scale SWNT/P3HT bilayer photovoltaics using horizontally aligned SWNT arrays. Importantly, the devices exhibit greater than 90% effective external quantum efficiency. These key findings will not only enhance our knowledge of photocurrent generation at nanoscale interfaces, but also make selective omission of m-SWNT redundant, promising carbon nanomaterial-based, low-cost, high-efficiency hybrid photovoltaics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据