4.8 Article

Organic Multiferroic Tunnel Junctions with Ferroelectric Poly(vinylidene fluoride) Barriers

期刊

NANO LETTERS
卷 11, 期 2, 页码 599-603

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl103650b

关键词

Electron tunneling; spintronics; organic ferroelectrics; organic tunnel junctions; multiferroic tunnel junctions

资金

  1. National Science Foundation (NSF) through Institute of Functional Nanomaterials at University of Puerto Rico (UPR) [0701525]
  2. Materials Research Science and Engineering Center at University of Nebraska-Lincoln (UNL) [0820521]
  3. Experimental Program to Stimulate Competitive Research [EPS-1010674, EPS-1010094]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [1105474] Funding Source: National Science Foundation
  6. EPSCoR
  7. Office Of The Director [1010094, 1010674] Funding Source: National Science Foundation

向作者/读者索取更多资源

Organic materials are promising for applications in spintronics due to their long spin-relaxation times in addition to their chemical flexibility and relatively low production costs. Most studies of organic materials for spintronics focus on nonpolar dielectrics or semiconductors, serving as passive elements in spin transport devices. Here, we demonstrate that employing organic ferroelectrics, such as poly(vinylidene fluoride) (PVDF), as barriers in magnetic tunnel junctions (MTJs) allows new functionality in controlling the tunneling spin polarization via the ferroelectric polarization of the barrier. Using first-principles methods based on density functional theory we investigate the spin-resolved conductance of Co/PVDF/Co and Co/PVDF/Fe/Co MTJs as model systems. We show that these tunnel junctions exhibit multiple resistance states associated with different magnetization configurations of the electrodes and ferroelectric polarization orientations of the barrier. Our results indicate that organic ferroelectrics may open a new and promising route in organic spintronics with implications for low-power electronics and nonvolatile data storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据