4.8 Article

Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature

期刊

NANO LETTERS
卷 10, 期 2, 页码 715-718

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl9039636

关键词

Graphene; field-effect transistors; on/off current ratio; transport band gap; digital electronics

向作者/读者索取更多资源

Graphene is considered to be a promising candidate for future nanoelectronics due to its exceptional electronic properties. Unfortunately, the graphene field-effect transistors (FETs) cannot be turned off effectively due to the absence of a band gap, leading to an on/off current ratio typically around 5 in top-gated graphene FETs. On the other hand, theoretical investigations and optical measurements suggest that a band gap up to a few hundred millielectronvolts can be created by the perpendicular E-field in bilayer graphenes. Although previous carrier transport measurements in bilayer graphene transistors did indicate a gate-induced insulating state at temperatures below I K, the electrical (or transport) band gap was estimated to be a few millielectronvolts, and the room temperature on/off current ratio in bilayer graphene FETs remains similar to those in single-layer graphene FETs. Here, for the first Lime, we report an on/off current ratio of around 100 and 2000 at room temperature and 20 K, respectively, in our dual-gate bilayer graphene FETs. We also measured an electrical band gap of > 130 and 80 meV at average electric displacements of 2.2 and 1.3 V nm(-1), respectively. This demonstration reveals the great: potential of bilayer graphene in applications such as digital electronics, pseudospintronics, terahertz technology, and infrared nanophotonics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据