4.8 Article

Imaging the Structure, Symmetry, and Surface-Inhibited Rotation of Polyoxometalate Ions on Graphene Oxide

期刊

NANO LETTERS
卷 10, 期 11, 页码 4600-4606

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl1026452

关键词

Graphene; graphene oxide; polyoxometalate; surface chemistry; electron microscopy

资金

  1. EPSRC
  2. AIST
  3. Advantage West Midlands (AWM)
  4. European Regional Development Fund (ERDF)

向作者/读者索取更多资源

Atomic-resolution imaging of discrete [gamma-SiW10O36](8-) lacunary Keggin ions dispersed MO monolayer graphene oxide (GO) films by low voltage aberration corrected transmission electron microscopy is described. Under low electron beam dose, individual anions remain stationary for long enough that a variety of projections can be observed and structural information extracted with ca. +/- 0.03 nm precision. Unambiguous assignment of the orientation of individual ions with respect to the point symmetry elements can be determined. The C-2 gamma symmetry [gamma-SiW10O36](8-) ion was imaged along its 2-fold C-2 axis or orthogonally with respect to one of two nonequivalent mirror planes (i.e., sigma(nu)). Continued electron beam exposure of a second ion imaged orthogonal to sigma(nu) causes it to translate and/or rotate in an inhibited fashion so that the ion can be viewed in different relative orientations. The inhibited surface motion of the anion, which is in response to H-bonding-type interactions, reveals an important new property for GO in that it demonstrably behaves as a chemically modified (i.e., rather than chemically neutral) surface in electron microscopy. This behavior indicates that GO has more in common with substrates used in imaging techniques such as atomic force microscopy and scanning tunneling microscopy, and this clearly sets it apart From other support films used in transmission electron microscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据