4.8 Article

Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study

期刊

NANO LETTERS
卷 9, 期 7, 页码 2730-2735

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl901231s

关键词

-

资金

  1. Semiconductor Research Corporation (SRC)
  2. Nanoelectronics Research Initiative (NRI), Midwest Institute for Nanoelectronics Discovery (MIND)

向作者/读者索取更多资源

We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to similar to 4 nm wide and similar to 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., similar to 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据