4.8 Article

Sulfide Nanocrystal Inks for Dense Cu(In1-xGax)(S1-ySey)2 Absorber Films and Their Photovoltaic Performance

向作者/读者索取更多资源

Recent developments in the colloidal synthesis of high quality nanocrystals have opened up new routes for the fabrication of low-cost efficient photovoltaic devices. Previously, we demonstrated the utility of CuInSe2 nanocrystals in the fabrication of CuInSe2 thin film solar cells. In those devices, sintering the nanocrystal film yields a relatively dense CuInSe2 film with some void space inclusions. Here, we present a general approach toward eliminating void space in sintered nanocrystal films by utilizing reactions that yield a controlled volume expansion of the film. This is demonstrated by first synthesizing a nanocrystal ink composed of Cu(In1-xGax)S-2 (CIGS). After nanocrystal film formation, the nanocrystals are exposed to selenium vapor during which most of the sulfur is replaced by selenium. Full replacement produces a similar to 14.6% volume expansion and reproducibly leads to good dense device-quality CIGSSe absorber films with reduced inclusion of void space. Solar cells made using the CIGSSe absorber films fabricated by this method showed a power conversion efficiency of 4.76% (5.55% based on the active nonshadowed area) under standard AM1.5 illumination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据