4.8 Article

Lateral Buckling Mechanics in Silicon Nanowires on Elastomeric Substrates

期刊

NANO LETTERS
卷 9, 期 9, 页码 3214-3219

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl901450q

关键词

-

资金

  1. Korean Ministry of Education, Science, and Technology (MEST) in 2009 [K2070400000307A050000310]

向作者/读者索取更多资源

We describe experimental and theoretical studies of the buckling mechanics in silicon nanowires (SiNWs) on elastomeric substrates. The system involves randomly oriented SiNWs grown using established procedures on silicon wafers, and then transferred and organized into aligned arrays on prestrained slabs of poly(dimethylsiloxane) (POMS). Releasing the prestrain leads to nonlinear mechanical buckling processes that transform the initially linear SINWs into sinusoldal (i.e., wavy) shapes. The displacements associated with these waves lie in the plane of the substrate, unlike previously observed behavior in analogous systems of silicon nanoribbons and carbon nanotubes where motion occurs out-of-plane. Theoretical analysis indicates that the energy associated with this in-plane buckling is slightly lower than the out-of-plane case for the geometries and mechanical properties that characterize the SiNWs. An accurate measurement of the Young's modulus of individual SiNWs, between similar to 170 and similar to 110 GPa for the range of wires examined here, emerges from comparison of theoretical analysis to experimental observations. A simple strain gauge built using SiNWs in these wavy geometries demonstrates one area of potential application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据