4.8 Article

Simple, Rapid, Sensitive, and Versatile SWNT-Paper Sensor for Environmental Toxin Detection Competitive with ELISA

期刊

NANO LETTERS
卷 9, 期 12, 页码 4147-4152

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl902368r

关键词

-

资金

  1. National Science Foundation of China [20675035, 20871060, 20835006]
  2. 11th Five Years Key Programs for Science and Technology Development of China [200810099, 200810219, 2008ZX08012-001]
  3. 111 project [B07029, PCSIRT0627]
  4. AFOSR [FA9550-05-1-043]
  5. NSF [CMS-0528867, ECS-0601345]
  6. NIH [5R01EB007350-02]
  7. NATIONAL CANCER INSTITUTE [R21CA121841] Funding Source: NIH RePORTER
  8. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [R01EB007350] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Safety of water was for a long time and still is one of the most pressing needs for many countries and different communities. Despite the fact that there are potentially many methods to evaluate water safety, finding a simple, rapid, versatile, and inexpensive method for detection of toxins in everyday items is still a great challenge. In this study, we extend the concept of composites, impregnated porous fibrous materials, such as fabrics and papers, by single-walled carbon nanotubes (SWNTs), toward very simple but high-performance biosensors. They utilize the strong dependence of electrical conductivity through nanotubes percolation network on the width of nanotube-nanotube tunneling gap and can potentially satisfy all the requirements outlined above for the routine toxin monitoring. An antibody to the microcystin-LR (MC-LR), one of the common culprits in mass poisonings, was dispersed together with SWNTs. This dispersion was used to dip-coat the paper rendering it conductive. The change in conductivity of the paper was used to sense the MC-LR in the water rapidly and accurately. The method has the linear detection range up to 10 nmol/L and nonlinear detection up to 40 nmol/L. The limit of detection was found to be 0.6 nmol/L (0.6 ng/mL), which satisfies the strictest World Health Organization standard for MC-LR content in drinking water (1 ng/mL) and is comparable to the detection limit of the traditional ELISA method of MC-LR detection, while drastically reducing the time of analysis by more than an order of magnitude, which is one of the major hurdles in practical applications. Similar technology of sensor preparation can also be used for a variety of other rapid environmental sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据