4.8 Article

Graphene nanoflakes with large spin

向作者/读者索取更多资源

We investigate, using benzenoid graph theory and first-principles calculations, the magnetic properties of arbitrarily shaped finite graphene fragments to which we refer as graphene nanoflakes (GNFs). We demonstrate that the spin of a GNF depends on its shape due to topological frustration of the pi-bonds. For example, a zigzag-edged triangular GNF has a nonzero net spin, resembling an artificial ferrimagnetic atom, with the spin value scaling with its linear size. In general, the principle of topological frustration can be used to introduce large net spin and interesting spin distributions in graphene. These results suggest an avenue to nanoscale spintronics through the sculpting of graphene fragments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据