4.8 Article

Contact effects in graphene nanoribbon transistors

向作者/读者索取更多资源

The effects of the various contact types and shapes on the performance of Schottky barrier graphene nanoribbon field-effect-transistors (GNRFETs) have been investigated using a real-space quantum transport simulator based on the NEGF approach self-consistently coupled to a three-dimensional Poisson solver for treating the electrostatics. The device channel considered is a double gate semiconducting armchair nanoribbon. The types of contacts considered are (a) a semi-infinite normal metal, (b) a semi-infinite graphene sheet, (c) finite size rectangular shape armchair graphene contacts, (d) finite size wedge shape graphene contacts, and (e) zigzag graphene nanoribbon contacts. Among these different contact types, the semi-infinite graphene sheet contacts show the worst performance because of their very low density of states around the Dirac point resulting in low transmission possibility through the Schottky barrier, both at ON and OFF states. Although all other types of contacts can have significant enhancement in I-ON to I-OFF ratio, the zigzag GNR contacts show promising and size invariant performance due to the metallic properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据