4.1 Article

Characterization and detection of cellular and proteomic alterations in stable stathmin-overexpressing, taxol-resistant BT549 breast cancer cells using offgel IEF/PAGE difference gel electrophoresis

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mrgentox.2010.08.019

关键词

Stathmin; Taxol; Microtubule dynamics; Proteomics; Mitosis; Resistance

资金

  1. NIH [CA 057291, RR 024153]

向作者/读者索取更多资源

Stathmin/oncoprotein 18, a protein that regulates microtubule dynamics, is highly expressed in a number of tumors including leukemia. lymphoma, neuroblastoma, breast, ovarian, and prostate cancers. High stathmin levels have been associated with the development of resistance to the widely used anti-cancer drug taxol ((R) Taxol, paclitaxel). The mechanisms of stathmin-mediated taxol resistance are not well-understood at the molecular level. To better understand the role of stathmin in taxol resistance, we stably overexpressed stathmin twofold in BT549 human breast cancer cells and characterized several cell processes involved in the mechanism of action of taxol. After stable overexpression of stathmin, neither the cell doubling time nor the mitotic index was altered and the microtubule polymer mass was reduced only modestly (by 18%). Unexpectedly, microtubule dynamicity was reduced by 29% after stathmin overexpression, resulting primarily from reduction in the catastrophe frequency. Sensitivity to taxol was reduced significantly (by 44%) in a clonogenic assay, and stathmin appeared to protect the cells from the spindle-damaging effects of taxol. The results suggest that in the stably stathmin-overexpressing clones, compensatory gene expression occurred that resulted in normal rates of cell proliferation and prevented the increase in catastrophe frequency expected in response to stathmin. Stathmin overexpression protected the cells from taxol-induced abnormal mitoses, and thus induced taxol resistance. Using offgel IEF/PAGE difference gel electrophoresis, we identified a number of proteins whose expression is reduced in the taxol-resistant stathmin-overexpressing cell lines, including proteins involved in the cytoskeleton and cell structure, the stress response, protein folding, glycolysis, and catalysis. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据