4.1 Article

Gamma-irradiation increased meiotic crossovers in mouse spermatocytes

期刊

MUTAGENESIS
卷 26, 期 6, 页码 721-727

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mutage/ger038

关键词

-

资金

  1. The PhD Research Foundation of Southwest University of Science and Technology [06zx7121]
  2. The National Basic Research Program of China (973) [2006CB504003, 2007CB947401]
  3. Chinese Academy of Sciences [KSCX2-EW-P-07]

向作者/读者索取更多资源

In mice, the occurrence of immunofluorescent foci for mismatch repair protein MLH1 correlates closely with the occurrence of crossovers, as detected genetically, and MLH1 foci represent virtually all prospective crossover positions. To examine the effects of gamma-irradiation on meiotic crossovers in mouse spermatocytes, male mice were subjected to whole-body gamma-irradiation at different sub-stages of meiotic prophase and crossovers on synaptonemal complexes (SCs) were analysed by visualising and quantifying the immunofluorescent MLH1 foci. At both 24 and 48 h after exposure, significant dose-dependent increases in the number of total MLH1 foci per spermatocyte were observed at late zygotene-early pachytene with the gradient increase of radiation dose from 0, 1.5, 3-6 Gy. Furthermore, irradiation at preleptotene-leptotene still led to significant dose-dependent increased meiotic crossovers in the spermatocytes analysed 120 h after exposure. In further analysis, these dose-dependent increases in the number of total MLH1 foci per cell were attributed to significant dose-dependent decreases in autosomal SCs with 0 MLH1 focus, and the dose-dependent increases in autosomal SCs with 2 MLH1 foci and the percentage of cells with MLH1 focus on XY bivalent. The increased number of cells with an MLH1 focus on the pseudoautosomal regions (PARs) may indicate that there is a delay in meiotic progression in the irradiated cells. Although significant dose-dependent increases in the number of total MLH1 foci per cell were examined 24, 48 or 120 h after exposure with the gradient increase of radiation doses, these increases were mild compared to the control groups. This suggests that there is tight control of crossover formation (at least with respect to MLH1 foci number). The mechanisms underlying irradiation-induced DNA lesion repair, cellular responses independent of DNA damage and meiotic crossover homeostasis in mammals will be the subjects of future study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据