4.6 Article

An improved lossless image compression based arithmetic coding using mixture of non-parametric distributions

期刊

MULTIMEDIA TOOLS AND APPLICATIONS
卷 74, 期 23, 页码 10605-10619

出版社

SPRINGER
DOI: 10.1007/s11042-014-2195-8

关键词

Arithmetic coding; Lossless compression; Image compression; Finite mixture model; Expectation-maximization algorithm; Kullback-Leibler distance

向作者/读者索取更多资源

In this paper, we propose a new approach for a block-based lossless image compression using finite mixture models and adaptive arithmetic coding. Conventional arithmetic encoders encode and decode images sample-by-sample in raster scan order. In addition, conventional arithmetic coding models provide the probability distribution for whole source symbols to be compressed or transmitted, including static and adaptive models. However, in the proposed scheme, an image is divided into non-overlapping blocks and then each block is encoded separately by using arithmetic coding. The proposed model provides a probability distribution for each block which is modeled by a mixture of non-parametric distributions by exploiting the high correlation between neighboring blocks. The Expectation-Maximization algorithm is used to find the maximum likelihood mixture parameters in order to maximize the arithmetic coding compression efficiency. The results of comparative experiments show that we provide significant improvements over the state-of-the-art lossless image compression standards and algorithms. In addition, experimental results show that the proposed compression algorithm beats JPEG-LS by 9.7 % when switching between pixel and prediction error domains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据