4.6 Article

Materials in superconducting quantum bits

期刊

MRS BULLETIN
卷 38, 期 10, 页码 816-825

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/mrs.2013.229

关键词

-

向作者/读者索取更多资源

Superconducting qubits are electronic circuits comprising lithographically defined Josephson tunnel junctions, inductors, capacitors, and interconnects. When cooled to dilution refrigerator temperatures, these circuits behave as quantum mechanical artificial atoms, exhibiting quantized states of electronic charge, magnetic flux, or junction phase depending on the design parameters of the constituent circuit elements. Their potential for lithographic scalability, compatibility with microwave control, and operability at nanosecond time scales place superconducting qubits among the leading modalities being considered for quantum information science and technology applications. Over the past decade, the quantum coherence of superconducting qubits has increased more than five orders of magnitude, due primarily to improvements in their design, fabrication, and, importantly, their constituent materials and interfaces. In this article, we review superconducting qubits, articulate the important role of materials research in their development, and provide a prospectus for the future as these devices transition from scientific curiosity to the threshold of technical reality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据