4.6 Article

Quantum computing based on semiconductor nanowires

期刊

MRS BULLETIN
卷 38, 期 10, 页码 809-815

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/mrs.2013.205

关键词

-

向作者/读者索取更多资源

A quantum computer will have computational power beyond that of conventional computers, which can be exploited for solving important and complex problems, such as predicting the conformations of large biological molecules. Materials play a major role in this emerging technology, as they can enable sophisticated operations, such as control over single degrees of freedom and their quantum states, as well as preservation and coherent transfer of these states between distant nodes. Here we assess the potential of semiconductor nanowires grown from the bottom-up as a materials platform for a quantum computer. We review recent experiments in which small bandgap nanowires are used to manipulate single spins in quantum dots and experiments on Majorana fermions, which are quasiparticles relevant for topological quantum computing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据