4.6 Article

Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery

期刊

MRS BULLETIN
卷 37, 期 3, 页码 261-270

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/mrs.2012.49

关键词

-

资金

  1. Office of Naval Research (ONR) [N00014-11-1-0664]
  2. U.S. DOE, Basic Energy Sciences, under U.S. DOE, Office of Basic Energy Sciences [DE-AC02-06CH11357]

向作者/读者索取更多资源

Research in ABO(3) perovskite oxides ranges from fundamental scientific studies in superconductivity and magnetism to technologies for advanced low-power electronics, energy storage, and conversion. The breadth in functionalities observed in this versatile materials class originates, in part, from the ability to control the local and extended crystallographic structure of corner-connected octahedral units. While an established paradigm exists to alter the size, shape, and connectivity of the octahedral building blocks in bulk materials, these approaches are often limited to certain subsets of the allowed perovskite archetypes and chemistries. In this article, we describe emerging routes in thin films and multilayer superlattices enabled by epitaxial synthesis aimed at engineering the octahedral connectivity-rotational magnitudes and patterns-to reach unexplored portions of the crystallographic structure-property phase space for rational materials design. We review three promising chemistry-independent strategies that provide a handle to tune the octahedral connectivity: epitaxial strain, interfacial control at perovskite/perovskite heterojunctions, and rotation engineering in short-period superlattices. Finally, we touch upon potential new functionalities that could be attained by extending these approaches to static and dynamic manipulation of the perovskite structure through external fields and highlight unresolved questions for the deterministic control of octahedral rotations in perovskite-structured materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据