4.6 Article

Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy

期刊

MRS BULLETIN
卷 37, 期 1, 页码 47-52

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/mrs.2011.331

关键词

-

资金

  1. Australian Research Council

向作者/读者索取更多资源

We review the recently introduced technique of atomic-resolution chemical mapping in scanning transmission electron microscopy (STEM) based on energy-dispersive x-ray spectroscopy. Working at the atomic level is facilitated by ultrasensitive energy-dispersive x-ray detectors in combination with C-s-correction of the STEM probe. Details of the experimental implementation are discussed, and a theoretical framework within which the measured results can be understood is described. Three case studies are presented: the analysis of specimens of GaAs and SrTiO3, as well as examination of an interface between SrTiO3 and PbTiO3. Detailed theoretical simulations of the imaging process show that the projected positions of elements in atomic columns can be directly deduced from the chemical maps. For the core shells used, the effective ionization interaction is local and generally localized in the vicinity of the atoms being ionized. The local nature of the effective ionization potential means that this is an incoherent mode of imaging, akin to Z-contrast imaging but with additional chemical information.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据