4.6 Article

Plasmonics and nanophotonics for photovoltaics

期刊

MRS BULLETIN
卷 36, 期 6, 页码 461-467

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/mrs.2011.132

关键词

-

资金

  1. Australian Research Council
  2. Austrian Science Fund (FWF) [J 2979]

向作者/读者索取更多资源

In recent years, there has been rapid development in the field of nanoscale light trapping for solar cells. This has been driven by the decrease in thickness of solar cells in order to reduce materials costs, as well as advances in fabrication technology and computer power for simulating nanoscale structures. Nanoscale light trapping offers the possibility of enhancing absorption beyond the limits achievable with geometrical optics for certain structures. It also allows the optical design to be separated from the electrical design, as for example in plasmonic solar cells. Most importantly, thin-film cell designs will need to incorporate nanophotonic light trapping in order to reach their ultimate efficiency limits. In this article, we review the major types of nanophotonic light trapping, including plasmonic, diffraction gratings, and random scattering surfaces and describe the major advantages and disadvantages of each. In addition, we describe the most important related fabrication and characterization technologies and provide an outlook on future directions in this field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据